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New experimental aspects of He II are used as a guide toward a comprehensive 
theory in which nonzero temperature U(1) and SU(2) gauge fields are incorpor- 
ated into a gauge hierarchy of effective Lagrangians. We conjecture that an 
SU(n) gauge-theoretic description of the superfluidity of 4He may be obtained 
in the limit n ~ eo. We indicate, however, how experiments may be understood 
in the zeroth-, first-, and second-order of the hierarchy. 

1. I N T R O D U C T I O N  

1.1. The Variational Principle in Low-Temperature Physics 

The necessity for appealing to a powerful field-theoretic approach in 
the problems of low-temperature physics was recognized a long time ago. 
Cook (Cook, 1940) used Eckart 's variational principle (Eckart, 1938) in 
order to obtain the London equations of  superconductivity (London and 
London, 1935). More recently, the full microscopic theory (Bardeen et al., 
1957) has been studied in a Lagrangian formalism (Nambu,  1960; Lurie, 
1970; Chela-Flores, 1974; Baldo et al., 1977). The hydrodynamic equations 
of  the two-fluid model developed by Tisza for He II  were inferred from the 
Hamil ton principle of  particle mechanics (Tisza, 1947), but some difficulties 
were pointed out, including the failure by the theory to satisfy the law of 
conservation of momentum (Landau, 1949). Besides, a significant remark 
was made by Zilsel (Zilsel, 1950), namely, that Tisza's equations are valid 
only in the limit of  low velocities. Zilsel went on to derive the dissipationless 
two-fluid equations of  motion for liquid helium-four, giving explicitly its 
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thermodynamic and hydrodynamic properties and incorporating the interac- 
tions of the elementary excitations with a very wide range of applicability, 
particularly with regard to velocity and temperature. Jackson (1978, 1979) 
has discussed some criticisms put forward against Zilsel's approach (Lim, 
1963; Lhuillier et al., 1975) and has given a new Lagrangian derivation. 

1.2. Recent Developments in High-Energy Physics 

The above applications of the action-principle formalism benefit from 
a direct connection between symmetry principles and conservation laws. It 
is therefore very convenient to formulate physical laws by means of such 
variational methods. 

During the last few years considerable progress in understanding field 
theory has taken place, mainly with respect to the problem of the gravita- 
tional force (Fayet, 1982) as well as that of high-energy collisions. The latter 
has led to a theory of quark interactions-quantum chromodynamics (Gross 
and Wilczek, 1973; Politzer, 1973). It is therefore natural to enquire whether 
such progress in the physics of high energies can throw some new light on 
the remaining problems in the physics of low temperatures. 

These recent field-theoretic developments go beyond the straightfor- 
ward Lagrangian formulations mentioned above in the context of supercon- 
ductivity and superfluidity. New concepts, rich in content, have invaded 
realistic field theories, such as non-Abelian gauge fields (Yang and Mills, 
1954) and various applications of topology (Lee, 1981). While the latter 
concept has entered the domain of low-temperature physics with respect 
to the problem of superfluidity of 3He (Golo and Monastyrski, 1978), there 
are yet no applications of the concepts introduced by Yang and Mills (Yang 
and Mills, 1954). 

For the benefit of the uninitiated reader from low-temperature physics, 
and in view of the furthor developments we expect in future work, we have 
seen it appropriate to include the rather technical appendix (although it 
reproduces well-known work). 

1.3. Recent Experimental Developments in He II 

Recent developments have also occurred in our experimental under- 
standing of He II, in particular the following: 

(i) Unusually high velocities should be incorporated in a hydrody- 
namic description of Landau's two-fluid model, since critical 
velocities for superfluid flow through micron-size orifices were 
observed by Schofield (1972) to reach values as high as 10 m sec -1. 

(ii) Propagation of collective waves on the surface of He II films, one 
atomic layer thick, has been observed (Scholtz et al., 1974). 
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(iii) A better understanding of the He II atomic order has been accumu- 
lating (Robkoff and Hallock, 1981), so that unprecedented 
accuracy at large wave-vector transfer Q and low-temperature T 
is now available. In addition, measurements for S(Q, T) in the 
temperature range 1.38 < T < 4.24 K at s.v.p, and Q = 5.1 ~-1 have 
been undertaken. 

(iv) Neutron scattering determination of the momentum distribution 
function n(p) at large Q has presented us with a very strong 
experimental result which a theory of He II must describe. Sears 
et al, (1982) report that at 1 K about 13% of all atoms are in their 
lowest mode. 

1.4. Theoretical Implications of Recent Experiments 

New constraints arise in the theory in view of the recent results (i)-(iv). 
From (i) it is clear that proper account must be taken in a Zilsel-like 
approach of interactions among elementary excitations in such a way that 
high-fluid velocities may come within the scope of theory. More precisely, 
transitions between the two fluids are important (Jackson, 1979), thus going 
beyond Landau's theory (Landau, 1941; Landau, 1944). 

We may interpret (ii) as evidence in favor of taking the hydrodynamics 
of He II as having a greater range of validity than the Navier-Stokes theory 
for classical fluids (Putterman, 1974). A mixing of scales is to be expected: 
quantum effects occur on a macroscopic level while 4He hydrodynamics 
extends its range of validity to a microscopic level. It follows that Landau's 
model does not provide the required quantum continuum theory (Putterman, 
1974; Chela-Flores, 1976). 

The new experiments (iii) and (iv) are closely related. They underline 
the fact that, regardless of whether London's point of view (London, 1938a; 
London, 1938) on the microscopic origin of superfluidity is correct or not, 
the eventual microscopic theory we are still searching for must address itself 
to the "counting process," i.e., to the determination of the momentum 
distribution function n(p) for the lowest p, as well as to the shape of S(Q, T) 
for all Q and all T (-< T~). The accuracy of the recent experiments (Robkoff 
and Hallock, 1981; Sears et al., 1982) lead us to have such expectations of 
the predictive power of the eventual microscopic theory. 

1.5. Toward a Complete Description of He II 

Our point of view in the present work, as well as in that immediately 
preceding it (Ghassib and Khudeir, 1986), is closely related to Jackson's 
approach to liquid 4He: we feel that a unified theory of superfluidity is 
necessary in which previous successful approaches are incorporated into 
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the new work. Thus all the good features of the preceding theory adopted 
will become good features of the new comprehensive theory. However, the 
new work will, in some manner, extend its range of validity so as to address 
itself to the new phenomena being explored in the 1980s. 

Jackson has based his new work on the well-known description of 
He II in terms of correlated basis functions, which accounts for experi- 
mentally determined properties of liquid 4He with some success (Jackson 
and Feenberg, 1961; Jackson and Feenberg, 1962; Feenberg, 1969). 

1.6. The Hartree Liquid as a Limiting Case of an Abelian Gauge Theory 

On the other hand, the simple Hartree liquid approach to He II has 
been equally successful in incorporating a large number of features of He II 
(Gross, 1966; Pitaevskii, 1961). By its very formulation, it lends itself easily 
to treatment with the conventional methods of field theory, as it has been 
impressively shown recently by Anandan (Anandan, 1981, 1984), where he 
raises the possibility of using He II as the means for the first laboratory test 
of general relativity. We hope to show in Section 2 below that the Hat, tree 
liquid model (Gross, 1966; Pitaevskii, 1961) may serve as the limiting case 
of a temperature-dependent Abelian gauge theory of He II as the corre- 
sponding gauge field decouples. In this manner we set up a program of 
work in which we are guaranteed that the new more comprehensive theory 
to be constructed will carry over the proper description of ion mobility in 
the bulk fluid, vortex structure, critical-velocity phenomena, and so forth 
(Gross, 1966). 

Having in mind the recent experimental results (i)-(iv) of Section 1.3, 
we prefer, following Gross (1966), to begin with the wave function for the 
N-helium atom system of real He II, ~'(Xl, x2, . .  �9 xN ; t). We then use the 
Hartree approximation, according to which each single-particle wave func- 
tion ~b must satisfy 

h 2 ~ f iOt~b :--2m* Ox~(2 x, t) +~ 0(x, t )+0 (x ,  t) dx'  V(x-x')lq,(x, t)l 2 (1) 

Here A denotes an average energy, while V denotes the effective interaction 
which each single particle is subject to by the effect of the others; finally, 
m* denotes the mass of a 4He quasiparticle. 

In view of what was said in Section 1.3, we shall attempt to construct 
a Lagrangian density which reproduces (1), but which will lead us to a 
temperature-dependent gauge theory by turning gauge invariance of the 
first kind into that of the second kind, as explained by Utiyama (1956). In 
the case of zero temperature, this has already been done (Chela-Flores, 
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1975): 

i , 1 , 
~ o ~  = - 2  (4,~,4, - ~,*~,4,) -~ 0x4~ �9 a~r 

- O*(x'-  0 ~ * ( x ,  t ) V ( x - x ' ) 4 , ( x ,  t)O(x',  t) dx'-~O*~ (2) 

Here we have considered the Lagrangian density as the zeroth approxima- 
tion to the hierarchy of  effective Lagrangians which will describe He II. In 
the above equation, and henceforth, we use a system of  units such that 

h= m*=kB= t 

where k.  is Boltzmann's constant. In equation (2) we have introduced trivial 
corrections to the original form of the Lagrangian density, which were, 
pointed out (Chela-Flores et al., 1977) after the publication of the U(1) 
gauge theory (Chela-Flores, 1975). 

In order to complete the program initiated at the beginning of Section 
1.5, the rest of  this paper is laid out as follows. In Section 2 we give the 
basic arguments required to generalize the earlier formalism (Chela-Flores, 
1975) so as to include temperature variations. We follow this, in Section 3, 
with a brief account of  the hydrodynamics, indicating the differences and 
similarities between the zero-T and T # 0 theory, as well as between the 
limiting case of  the uncoupled gauge field and that in the presence of  this 
field. 

In Section 4 we outline the details of a calculation of the liquid structure 
factor at this lowest stage of the hierarchy of effective Lagrangians of the 
full comprehensive approach to He II. In Section 5 we sketch the second 
stage of  the proposed hierarchy by developing a non-Abelian gauge theory 
with a limiting case (uncoupled field) coinciding with a pairing theory of  
bosons with an energy gap. In Section 6 we conjecture that the hierarchy 
of successive effective lagrangians for He II leads to a general SU(n) gauge 
theory. Finally, in Section 7, we summarize and conclude. 

2. A TEMPERATURE-DEPENDENT U(n =1)  GAUGE THEORY 

The main idea is to regard our system of strongly interacting particles 
as ar lbly of weakly interacting quasiparticles (Bloch, 1965). The 
convemmnal methods of  statistical mechanics, formulated in terms of  the 
grand canonical ensemble, can then be directly applied in the usual manner 
(Valatin and Butler, 1958; Pathria, 1972). Since many of  the resulting 
equations are in a more or less one-to-one correspondence with their 
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zero-temperature counterpart we shall be quite brief in presenting the formal 
background. The function q,(x, t) denotes the expectation value (tp) of the 
annihilation field operator, the averaging procedure being performed in the 
familiar statistical-mechanical manner for a gas of Bose quasiparticles within 
the framework of the grand canonical ensemble: 

(t#) = T,{exp[-/3/4(T)](b}/ZG (3) 

where Za is the grand partition function: 
A 

Zo = Tr exp[- f lH(  T)] (4) 

and fl is the usual temperature parameter, which is simply T -1 in the present 
system of units. 

By turning the gauge invariance of the first kind (global symmetry) of 
the Lagrangian density (2) into gauge invariance of the second kind (local 
symmetry), we are led to a new action principle: 

6 J w(1)~ef dsx = 0 (5) 

where the effective Lagrangian density for the first stage of the gauge 
hierarchy is given by 

i. . . �9 7t , 1 
~(~'~) = - ~ (q/0 ,q/ - 0 0,q/)  - ~ ~0 ~O - ~ [ (0x  + iu)  - A] ~0". [ (0x  - i x )  - A] 0 

- f ~*(x" t)~*(x' t) V ( x -  x')~(x' t)t~(x" t) dx' +~ Ox • U " Ox• u 

(6) 
As usual, the simplest scalar Lagrangian density of the gauge field u, 

k 
Lfo[U]-=~axxu �9 OxXU (7) 

has been added here, and derivatives have been replaced by their covariant 
counterparts. The constant [m*](k/2) is required for dimensional con- 
sistency. 

We work in terms of a temperature-dependent Hamiltonian H(T)  
adjusted to yield the chemical potential/x =/~(T): 

/-I(T) = H - / . tN (8) 

denoting the original Hamiltonian of the system, inferredfrom the above 
Lagrangian density through the standard variational method, and 

]Q = 2 atkak (9) 
k 

denoting the number operator. 
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In equation (2) the energy parameter h is. given by 

: / z N +  To- (10) 

o- being the entropy of the weakly interacting gas of Bose quasiparticles; 
this is related to the Bose-Einstein distribution function fk through the 
equation (Valatin and Butler, 1958): 

o- = - ~  [/k lnfk-- (1 +fk) In(1 +fk)] (11) 
k 

where 

fk = [exp/3(ek-  ~z)- 1] -1 (12) 

ek being the quasiparticle energy. 
The corresponding Euler-Lagrangian equations of motion are 

1 
iOttOT(X, t) = - ~  [(Ox- iu)2-  h]~OT(X, t) 

+ f V(X--X')It~T(X' , t)[2~bT(X, t) dx' (13) 
3 

and 

1 
kOxX 0xxu = -2--i [0R(x, t) 0xOr(X, t) -- ~T(X, t) 0xO*r(X, t)] 

-10T(x, t)[2u (14) 

where a subscript T has now been attached to ~ to denote its implicit 
dependence on temperature. 

The underlying theory is a two-fluid picture (Chela-Flores, 1975); the 
field u may be conjectured to represent the velocity field of one of these 
two fluids. It would be fruitful, at some later stage, to clarify this Picture 
by unmasking the explicit connection of ~ and u with thermodynamic 
quantities, in the manner of Landau's two-fluid theory (Landau, 1941, 1947). 
For the moment we have incorporated superfluidity into the system via the 
additional gauge symmetry which goes beyond that of the Hartree-liquid 
model. Accordingly, superfluidity and Bose-Einstein condensation are not 
necessarily interwoven in the present framework, whose generality may best 
be appreciated by viewing the Lagrangian ansatz of equation (6) as merely 
a first step in a hierarchy of more and more refined effective Lagrangians, 
which result as the system is explored further (Ghassib and Khudeir, 1986) 
(cf. Sections 5 and 6). 
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In the limit of vanishing gauge field u, equation (13) simply reduces 
to a temperature-dependent nonlinear Schr6dinger equation: 

1 f iOt@T(X, t )= - -~  (02--~.)~br(x, t)+ Or(x, t) V(X--X')I~bT(X', 012 dx' 

(15) 

Thus, in the limiting case, the U(1) gauge theory combines the most 
attractive features of both the present U(1) approach, as well as the weak 
coupling type of theory (cf. Section 1.5). In this sense, it is a temperature- 
dependent version of the so-called hybrid approach (Ghassib and Khudeir, 
1986). 

3. U(n = 1) HYDRODYNAMICS 

The hydrodynamic equations follow from the familiar Madelung trans- 
formation (Gross, 1966): 

tpT-(x, t) -- RT-(x, t) exp[/ST(X, t)] (16) 

where Rr(x, t) and ST(x, t) are both real quantities: Rr  is the square root 
of the local fluid density. We now look at two different cases. 

3.1. The Hartree-Liquid Limit 

We shall first derive the hydrodynamic equations in the limiting case 
of a vanishingly small gauge field (low-velocity approximation). Substituting 
equation (16) into (15) and equating imaginary parts, we have 

OtR~(x, t)+ax" [Rr(x, t)OxSr(x, t)] = 0 (17) 

whereas from the real parts, we obtain 

--Rr(x, t)OtSr(x, t)+�89 C92xRT(x, t )= E[ V]RT(X, t) (18) 

where 

E[ V] = {l[axST-(x , t)]2-~.}+ f V(x-x')R~(x', t) dx' (19) 

This is a generalized, temperature-dependent functional of the interaction. 
We note that equation (17) is again the continuity equation, which is 

identical in form to its zero-temperature counterpart (Chela-Flores, 1975), 
save for the implicit temperature dependence of RT and ST. Further, 
equation (17) is the temperature-dependent Bernoulli equation, which is 
extremely rich in content. 
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3.2. The U(1) Full Equations 

We shall retain the gauge field, as was done in the U(1) zero- 
temperature case (Cheta-Flores, 1975). Taking imaginary parts leads us 
once again to a Bernoulli equation (18), with a correcting term including 
the gauge field. 

However, we wish to show explicitly the effect of taking real parts. In 
this case, we find 

a,p + o..  (pv) = �89 o.p (20) 

This leads us to expect a two-fluid picture, in which p(x, t, T) is the density 
of one fluid which, when added to the density of a second interpenetrating 
fluid of density ~'(x, t, T), retrieves the total bulk density ptot: 

ptot = p(x, t, T ) +  ~-(x, t, T) (21) 

It follows that the hydrodynamic continuity equation for the second fluid is 

O,~'+Ox" (~'u)= -�89 �9 axe" (22) 

for, in this case, we recover the expected continuity equation for the bulk 
fluid: 

OtPtot'k- O x " J : 0 (23) 

where the total current is given by 

J = p(x, t, T)v+ ~'(x, t, T)u (24) 

Thus, just as in the T = 0 case, at elevated temperatures we are also led to 
the Fr6hlich relation (Fr6hlich, 1969): 

O,~- + Ox" (ru) = -[Otp + Ox" (or) ]  # 0 (25) 

Yet it should be stressed that our equations (20) and (22) do not 
coincide with the Fr6hlich two-fluid theory for He 1I. Nor does our two-fluid 
picture duplicate Landau's theory (Landau, 1941) either. Yet, the possibility 
of implementing Putterman's program (1974) within our theory is not ruled 
out (see Sections 1 and 4). Since equations (16)-(24) are formally identical 
to the zero-temperature limit already studied (Chela-Flores, 1975), it follows 
that linear and circular vortices may be suitably described. We prefer to 
refer the reader to the published work and explore in the next section, as 
an illustration, some of the features of the liquid structure factor, then 
demonstrate how the present Abelian gauge theory should be viewed only 
as a first stage in a hierarchy of ever more accurate effective Lagrangians 
of possibly non-Abelian gauge theories. We shall return to this important 
remark in Section 6. 
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4. U(n = 1) APPROXIMATE CALCULATION OF ATOMIC ORDER 

As a first step, and for comparison purposes, we adopt the same set 
of approximations already used in previous work at zero temperature 
(Chela-Flores, 1977; Ghassib and Khudeir, 1986), namely, the following: 

(a) The term �89 t) is neglected, implying the low-fluid-velocity 
limit. 

(b) A stationary fluid is assumed, in the sense that -OtST(x, t) is set 
equal to a constant, E~, say. 

(c) A spherically symmetric solution is used, that is, p(x, T) = p(r, T) -= 
RZ(r) .  

(d) We confine our attention to the long-wavelength (low-Q) limit only. 
(e) We employ, once again, a purely 6-function interaction: 

V(x - x') = U6(x - x') (26) 

While approximations (a)-(d) are physically quite sound, (e) has been 
adopted only for mathematical convenience. It must therefore be abandoned 
eventually in favor of a more realistic He-He interaction if the proper 
contact with experiment is to be made. 

With this set of approximations, equations (18) and (19) reduce to a 
nonlinear differential equation for p(r, T): 

2p 3/2 U -  2E~p 1/2 _ Or ( p  1/2)  : 0 (27) 

where 

Ev=- E~ + A= E~ + txN + T,~ (28) 

Equation (27) can be solved by direct integration (Chela-Flores, 1977) to 
yield, after some trivial manipulations, the following expression for the pair 
correlation function g,(r, T): 

g(r, T) =- p(r, T ) /p~  =tanh2[A(ro- r)] (29) 

p~ being the almost temperature-independent fluid density (= 0.1450 gm/ 
cm 3, or 2.18• 10 -2 particles ~3), and ro the temperature-independent 
"effective" hard-core radius (2 2.0 A~) (Mountain and Ravech~, 1973). The 
parameter A = A(T) is given by 

a ( T )  = ~ = p~ U (30) 

as can be inferred at once from previous manipulations. 
It is important to observe that U, the strength parameter of the 6- 

function interaction, is temperature dependent; this is evident from equation 
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(30), since p~ hardly depends on the temperature. The key point here is 
that V is an effective interaction, which is a function of the properties of 
the medium. Clearly, with a more realistic potential, T should play a more 
conspicuous role. 

Having obtained g(r, T), we can derive the liquid structure factor 
S(Q, T) exactly as outlined in the zero-temperature theory (Chela-Ftores, 
1977), taking proper care of all the analytic details (Ghassib and Khudeir, 
1986). The final result is, in the small-Q limit, 

S(Q, T) = So(T) + S2(T) Q2 (31) 

where 

So(T) = 1 - 4~rp~r3ofl( T) 

$2(T) = 4zrp~or~f2( T) 

(32) 

(33) 

fl and f2 being some temperature-dependent numerical factors defined by 

fl(T) ~/3(tanh a + 1) +/32I, + 2/3 z In 2 

7r 2 
+ - - / ~ 3 - -  2/~2(a taoh a - I n  cosh a) (34) 

12 

. ~.2 3 7 ~  "4 
f2(T) =/33 ~--~+/~4 4 ~:(3) +/~5 1440 (35) 

In these expressions 

a ~ A(T)ro, f l= a - '  (36) 

whereas ~:(3) is the usual Riemann ff function (= 1.20206), and 

Is ~ f x 2 sech 2 x dx 
3 

(37) 

which is trivial to evaluate numerically. 
Prior to comparing these results with the available experimental data, 

we should point out some of the important physical implications of the 
foregoing equations. 

First, equation (29) still reflects the gaslike aspects of He II, long 
recognized by Gross (Gross, 1966) and Pitaevskii (Pitaevskii, 1961). 
However, this is a natural consequence of using a 3-function interaction; 
better results will undoubtedly arise with more realistic interactions. 
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Second, there should appear in the limit T = 0 a linear term in Q. This 
is Feynman's term (Feynman, 1954; Feynman and Cohen, 1956), which is 
nothing but the phonon contribution. It is not clear whether this will appear 
if a realistic potential is employed, where the all-important long-range 
attractive tail is explicitly retained, or whether it is somehow linked with 
the other approximations introduced above to simplify the calculations (for 
example, the limit of a vanishing gauge field u), or even if the U(1) level 
of the effective Lagrangian ~1) is not adequate (cf. Section 6). Further 
analysis is certainly called for to resolve this question. In this connection 
the aim here is to do at least as well as other fairly successful attempts in 
the field (Feenberg, 1972). 

Returning to equation (31), it is instructive to examine the low- 
temperature behavior (T<0.5 K) of S(Q, T). In this regime the specific 
heat satisfies the familiar T 3 law, so that the entropy t r -  T 3, as has been 
confirmed experimentally (Bendt et al., 1959). M o r e o v e r / z N - -  T, in the 
present system of units (Kittel, 1969). Thus 

A ~ T, A -  T (38) 

so that, in the low-T limit, 

S(Q, T)~So,o+aT+bTQ 2 (39) 

where So,o is just the zero-temperature result; is a nonzero constant in 
agreement with Price's general theory of density fluctuations (Price, 1954). 
The term aT is reminiscent of Goldstein's well-known thermodynamic 
relation (Goldstein, 1951); whereas the last term, bTQ 2, implies that the 
curvature of S(Q, T) in the low-Q and low-T limits is linearly dependent 
on the temperature. This seems to conform well enough with the available 
experimental data (Robkoff and Hallock, 1981; Hallock, 1972; Svensson et 
al., 1980). Besides, except for the absence of the linear term in Q, equation 
(39) agrees by and large with Isihara's recent results (Isihara, 1981). It 
remains to be seen whether future experiments at even lower T and Q will 
vindicate our predictions. 

5. SU(n =2) GAUGE THEORY FOR HEII  

5.1. Unitary Symmetry of the Boson-Pairing Lagrangian 

Having gained experience with the nonzero temperature gauge theory, 
we see indications that perhaps one ought to explore the next step in the 
hierarchy of effective Lagrangians. 
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The next simplest approach to He II, which uses equations of evolution 
for macrowave functions, is a theory with a two-particle condensate, the 
first example of which is the theory of boson pairing of Valatin and Butler 
(Valatin and Butler, 1958). Subsequent studies have shown that the presence 
of the energy gap is a difficulty with this approach (Girardeau and Arnowitt, 
1959; Wentzel, 1960; Luban, 1962). 

The corresponding Lagrangian formulation of this theory may be 
inferred from a recent paper (Chela-Flores, 1982) (with some corrections) 
in analogy with the work of Nambu (Nambu, 1960; Lurie, 1970): 

~(2) ith*A(X, t) Ot(/)A(X, t) eft 

1 
2m* 

---0x~b*A(X, t)" O~bA(X, t)--AqStA(X, t)~bA(x, t) 

U 
--~- qSt+(x, t)~b*_(x, t)qS_(x, t)qS+(x, t) (40) 

where ~efrw(2) denotes the effective Lagrangian of the second stage of the gauge 
hierarchy. For simplicity we have made the same assumption (e) as in 
Section 4. Here we have expressed the total field operator 4~(x, t) in terms 
of the free Hamiltonian eigenfunctions: 

~+= E ak(t) Uk(x) (41) 
k > 0  

c~_ = Y, a_k(t) U_k(X) (42) 
k>0  

and considered ~ba, A = + or - .  Just as in the case of our first step in the 
hierarchy (Abelian gauge field), we remark that such a Lagrangian density 
is invariant under global symmetry (gauge invariance of the first kind): 

~/A "--) I/t~4 "= exp(ia)  0 a (43) 

where ~ is some constant. 
Bringing out the SU(2) 

1960): 
group in analogy with Nambu's (Nambu, 

L,~_(x, t) 

and with Pauli's ~'3 matrix, we may write the Lagrangian as 

~(2) ir o,@-�89 r3ax@-A@tdP-�89 eft ~ (45) 
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5.2. Further Symmetries of the Second-Order Effective Lagrangian 

We next turn the gauge invariance of the first kind (43) into a gauge 
invariance of  the second kind, which requires a Yang-Mills gauge field u 
to compensate for the constant a acquiring space dependence. 

In order to incorporate the work of Yang and Mills in w(2) weft, we proceed 
as follows. 

(a) We prefer to begin by introducing a relativistic formalism, in which 
space and time coordinates are treated on equal footing. We only require 
special relativity, unlike Anandan (1981, 1984), who coupled the Gross- 
Pitaevskii formalism (our zeroth approximation) to the equations of general 
relativity so as to study the effect of gravity on He II. 

~D(2) in flat space, the non- (b) Once we know how to write our ~efr 
relativistic limit, which concerns us here, may be extracted for low-particle 
velocities. 

(c) In flat space the SU(2) gauge field may then be coupled to our 
matter equations in the usual way, thus justifying our long-winded way of 
writing ~(2) 

(d) We restrict ourselves at this level of the hierarchy to absolute zero 
temperature. 

(e) Further, for simplicity, we discuss the Lorentz-invariant form of 
~?(o) Th generalization w(2) in ( f )  below is'evident. Since in the Schr6dinger eft �9 e ~Z~eff 
nonrelativistic picture, p i~ - i 0x , ,  E ~  iot and the nonrelativistic energy 
E = p2/2rn, we see that when using the relativistic expression E 2= p2+ m 2, 
we shall also be led to the Anandan-like equation (Anandan, 1981, 1984): 

[] 0 + m2~ b = - U0ltb[ 2 (46) 

where [] denotes the d'Alembertian; however, in our case, we raise indices 
with Minkowski's rl.~, instead of Anandan's full metric g.~. 

c o ( O )  (f) This, in turn, implies that the effective Lagrangian ~ must be 
generalized to the relativistic form 

~ ( O ) R  o. -- ~0~0 0"0-�89 =-�89 (47) 

where for convenience we have supposed that h = 0. 
(g) Finally, we are led to the effective Lagrangian: 

,=~(2) - -  I_[..~ - -  igu~" T)(I) t(0/x "~ igu"" ,r)rb 

_ s _ �89 U(~ t ~.3(I)) (~ t ~.3(I) ) 

k . p. ~ r. p. u ~ ) 2  - ~ ( 0  u - 0  u + 2 g u " x  (48) 

where k is a dimensional parameter, and g is related to the structure constant 
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of the SU(2) group. For practical applications, only the limit of low-fluid 
velocities need be considered. 

We have thus inferred a more involved gauge theory for superfluidity 
in which, by analogy with our experience in Sections 2 and 3, the gauge 
field will have an interpretation of a fluid velocity. 

6. TOWARD AN SU(n) THEORY 

6.1. U(1) Versus SU(2) Gauge Theories of He II 

The criticisms raised earlier (Girardeau and Arnowitt, 1959; Wentzel, 
1960; Luban, 1962) to the pairing theory with no gauge fields can no longer 
be applied to this non-Abelian pairing theory, since we have an intrinsic 
(gauge) velocity field, which potentially may quench the gap, since the 
velocity of the liquid is the analog to the magnetic field in the case of 
superconductivity. We expect that applying the Madelung transformation 
to the field equations will give us a (non-Abelian) hydrodynamics of He II, 
following closely our work of Section 3. The unsatisfactory points of the 
present approach--namely, the low value of the condensate fraction in the 
zero-temperature limit (Chela-Flores, 1976) and the missing linear term in 
the zero-T limit of S(Q, T)--might then give way to a closer agreement 
with experiment. 

However, as forcefully pointed out by March and Galasiewicz (1976), 
experiments cannot decide between a two- or more-particle condensate. 

6.2. SU(3)  Gauge Theory of He II and Beyond 

We have already seen in Section 5 that the earliest two-particle con- 
densate theory, in terms of pair correlations ~ba, A = +, - ,  is due to Valatin 
and Butler (Valatin and Butler, 1958). In fact, March and Galasiewicz 
(1976) have argued that a ground-state wave function cannot be constructed 
as a product of pairs if the condensate fraction vanishes. We conclude that 
at least three-atom correlations ought, then, to be included in the gauge 
hierarchy. If such were the case, then an internal SU(3) space with the triplet 

~A(X, t) : /O(X, t ) /  (49) 

\ t) / 

should be defined, and the associated SU(3) gauge theory of bosons would 
lead us, following the same steps as in this section, to the third stage of the 

~(3) A relativistic SU(3) gauge theory hierarchy--an effective Lagrangian ~ce~. 
of fermions is well known as quantum chromodynamics (Gross and Wilczek, 



288 Chela-Flores and Ghassib 

1973; Politzer, 1973). However, there is no reason why bigger multiplets 
would not be correlated into clusters ('t Hooft, 1982), thereby leading to 
SU(n)  gauge theories. By following the method indicated in Section 5, we 
would be able to study the nth stage of the hierarchy, in terms of the 
effective Lagrangian ~ ) .  

In fact, we may conjecture that as n -~ ~ ,  the SU(n -~ ~ )  gauge theory 
gives the correct description to superfluidity. Since n in the nonrelativistic 
problem of He II has a maximum value, nma x = the total number of helium 
atoms, -1023 atoms/cm 3, the mathematical limit is, in our case, a very good 
approximation. We have taken this limit, motivated by the conjecture ('t 
Hooft, 1982) that SU(n ~ oo) gauge theory is mathematically well defined. 
Yet 't Hooft type of fermion gauge theories carry chiral symmetry and 
asymptotic freedom. None of these properties is required for an SU(n ~ ~ )  
boson gauge theory of superfluidity; it is quite plausible that, if a proof is 
obtained in 't Hooft's fermion case, the conjecture might be realized in our 
boson theory. Although it is clearly too early to decide this question by 
theory or experiment, we have succeeded in pointing out a scheme in which 
gradual progress in this field still allows us to work out properties of He II 
at each stage of the gauge hierarchy, as shown in Sections 3 and 4. 

7. CONCLUSION 

In this paper we have taken the preliminary steps toward a comprehen- 
sive theory for He II: 

(i) We have generalized the theory to arbitrary temperatures. 
(ii) By so doing, we have acquired a better insight into the Abelian 

U(1) gauge field u itself. 
(iii) We have incorporated the two-particle condensate in an SU(2) 

gauge theory for superfluidity through the velocity field u~. 
(iv) In view of difficulties of the March-Galasiewicz type, which 

require correlations of more than two bosons, we are led, as in 
Section 5, to an SU(3) gauge theory, at least. The hierarchy of 
effective Lagrangians is conjectured to lead eventually to an SU(n)  
gauge theory in which every particle of the superfluid participates 
in the n-particle correlation underlining the theory. 

We feel that the new and old experimental aspects of the superfluidity 
of He II can find a proper description in the various stages of the gauge 
hierarchy of the conjectured comprehensive SU(n ~ oo) gauge theory, since 
we have understood how the U(1) simplest approximation works, and we 
have shown how to turn the global symmetry of the two-particle condensate 
theory into a local SU(2) gauge symmetry of the type of Yang and Mills 
(Yang and Mills, 1954). 
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APPENDIX 

Consider a unitary transformation that mixes the field components ~-t A 

(Fayet, 1982): 

~JA ~ UAB~IB, A, B = 1, 2 , . . . ,  n (A1) 

where 
UU+ = U+ U (A2) 

Here U are (n x n) unitary matrices, which may be chosen to have a 
determinant of 1. The set of all these matrices closes a group. It is customary 
to parametrize the U's by ( r / 2 -  1)ajs, where 

UAB = [ exp(  iTiai) ]aB (A3) 

The matrices ( T~)a~ are elements of an algebra defined by the commuta- 
tion relations 

ITs, Tj ] = ~jk Tk (A4) 

where f0k are the relevant structure constants, /jk = 1 , . . . ,  n. 
The requirement that the phases ai are coordinate dependent (i.e., 

local) induces a generalization of the electrodynamic gauge invariance. The 
requirement that the theory be invariant under a local S U ( n )  [cf. equation 
(A3)] leads to the introduction of the analog of the vector potential, namely, 
an (n x n) Hermitian matrix [Up,(X)]AB. There a r e  n 2 - 1 guage fields u .  that 
form elements of the matrix u~, : 

[Ut~]A B (A5) = uiI~(Ti)AB 

The combination 

(a~ - i g u ~ )  (A6) 

is called a covariant derivative. Yang and Mills (1954) showed that the 
analog of the electromagnetic field F ~  has the form 

= a~u ~ - a~u~ + gf'jkU ~U ~ (A7) 
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and it transforms according to 

F~Ti~ UF~T~U* (AS) 
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